Scalable Discriminative Learning for Natural Language Parsing and Translation

نویسندگان

  • Joseph P. Turian
  • Benjamin Wellington
  • I. Dan Melamed
چکیده

Parsing and translating natural languages can be viewed as problems of predicting tree structures. For machine learning approaches to these predictions, the diversity and high dimensionality of the structures involved mandate very large training sets. This paper presents a purely discriminative learning method that scales up well to problems of this size. Its accuracy was at least as good as other comparable methods on a standard parsing task. To our knowledge, it is the first purely discriminative learning algorithm for translation with treestructured models. Unlike other popular methods, this method does not require a great deal of feature engineering a priori, because it performs feature selection over a compound feature space as it learns. Experiments demonstrate the method’s versatility, accuracy, and efficiency. Relevant software is freely available at http://nlp.cs.nyu.edu/parser and http://nlp.cs.nyu.edu/GenPar.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Latent Structure Discriminative Learning for Natural Language Processing

Natural language is rich with layers of implicit structure, and previous research has shown that we can take advantage of this structure to make more accurate models. Most attempts to utilize forms of implicit natural language structure for natural language processing tasks have assumed a pre-defined structural analysis before training the task-specific model. However, rather than fixing the la...

متن کامل

Discriminative Models for Semi-Supervised Natural Language Learning

An interesting question surrounding semisupervised learning for NLP is: should we use discriminative models or generative models? Despite the fact that generative models have been frequently employed in a semi-supervised setting since the early days of the statistical revolution in NLP, we advocate the use of discriminative models. The ability of discriminative models to handle complex, high-di...

متن کامل

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Discriminative Training of a Neural Network Statistical Parser

Discriminative methods have shown significant improvements over traditional generative methods in many machine learning applications, but there has been difficulty in extending them to natural language parsing. One problem is that much of the work on discriminative methods conflates changes to the learning method with changes to the parameterization of the problem. We show how a parser can be t...

متن کامل

Discriminative Models and Training Methods For Statistical Machine Translation

Statistical Machine Translation (SMT) has been the dominant avor of Machine Translation (MT) over the last decade. Traditional SMT systems have a pipeline structure in which di erent kinds of Machine Learning models are employed in di erent stages. For the translation modeling, most state of the art systems use hybrid models that combine a handful of generative models in a discriminative framew...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006